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ABSTRACT

Digital games are unique in the sense that they are one
of the few mediums that allow users to directly interact
and engage with a virtual world. These worlds are of-
ten complex and filled with intertwining types of media
such as: audio, 3D/2D visuals and intricate narratives;
which in turn react to what the player is doing in-game.
This interaction however, is often hand-crafted by hu-
man designers who meticulously determine the exact pa-
rameters of how the player interacts and how the game
should react. One of the emerging fields within the dig-
ital game research community has been on the concept
of game content adaptation, where the field consists of
the development of methods that can adapt a game to-
wards the preference of the player. Despite a lot of work
existing in this field, the focus often tends to be exclu-
sively on the construction of a system that can generate
a wide variety of specific virtual artifacts (Procedural
Content Generation), or the development of statistical
models which provide powerful methodologies capable
of profiling and classifying players (Player Modeling).
This paper argues that these methods can be used for
other purposes that can directly benefit the player ex-
perience, where the game would tailor the game-play
to each individual or group of players. Although this
is not a relatively new idea, a lack of work and meth-
ods is still prevalent when it comes to the specification
of how this game-play can change in such a way that
it either benefits the player experience or some other
factor, such as games for rehabilitation that go beyond
entertainment. More precisely, this paper argues that
an abundant amount of research is being conducted on
one part of the problem, but not the other: “How does
a Digital Game Adapt?”.

Introduction

Modern games are complex interactive audio-visual ex-
periences, providing a set of strict rules of how players
interact and how this virtual experience responds to this
interaction. Often referred to as game mechanics, they
consist of a series of rules that determine the methods of
how a player interacts with the game and how this game
given a specific interaction will respond to the player.
Depending on the complexity of a game, these mechan-
ics can often influence or intertwine with each other lead-
ing to a complex virtual ecosystem leading to emergent
situations unique to each specific player (Hokkanen et al.
2018), and here lies the strength and uniqueness of dig-
ital games as a medium. Despite games already having
the ability to provide unique situations for players, these
often come at a cost of game-complexity, randomization
or even unintended features (e.g. bugs). Most games
also do not have the ability to tailor specific mechan-
ics or the content around each individual user, whereas
currently games are designed around a general audience.

Game content adaptation as proposed by (Pedersen
et al. 2010) was the culmination of two popular fields
of digital game research at the time: Player Model-
ing (PM) and Procedural Content Generation (PCG).
Specifically, PM consists of classifying either players or
playing behaviours, whilst PCG consists of developing
algorithms capable of generating digital game content
(e.g. levels) autonomously. (Pedersen et al. 2010) ar-
gued that through the collection of player experience
data an association can be made between the in-game
level parameters and the different types of playing expe-
riences (e.g. Challenge, Frustration, Fun, Anxiety). By
leveraging this player experience model the level gener-
ator can subsequently search the parameter space (i.e.
generates a level) that ideally optimize towards an in-
tended experience (e.g. generate a level that optimizes
or minimizes challenge/fun/frustration/anxiety).

Since (Pedersen et al. 2010) the concept of game adap-
tation has evolved over the years, and with the current
popularization of Machine Learning (ML) the idea of
PM for games has only grown (Drachen et al. 2012,



Yannakakis et al. 2013, El-Nasr et al. 2016), and has
began to include concepts of affective computing (Yan-
nakakis and Togelius 2011, Chanel et al. 2011, Lopes
et al. 2015). Despite a lot of research being devoted
to the construction of methods and models capable of
recognizing and categorizing players, the “content adap-
tation” aspect has fell behind with a lot of the method-
ologies focusing on PM rather than constructing PCG
algorithms capable of using PM data accordingly, thus
the question still remains “how can we tailor and
personalize a game that fits both designer and
player expectations?”.
It is unsurprising that this concept has fallen behind,
given that games are complex systems with intertwin-
ing digital artefacts who work in tandem creating an im-
mersive audio-visual interactive feedback loop (i.e. the
visuals and mechanics of a game responds to player in-
teraction further stimulating the player). Thus, it can
be difficult to pin-point exactly what and how content
can be adapted towards a specific objective, given the
difficulty of specifying exactly what changes influence
player experience and the knock-on effects that adap-
tation can incur on the overall game. Currently, such
systems are handcrafted to respond to specific triggers
and gameplaying contexts defined by the game designers
so as to elicit certain experiences and emotions. Thus,
when dealing with an autonomous adaptation system,
such handcrafted sequences must be dynamic and have
the ability to respond logically to both the player inter-
action and the experience/emotion recognition model.
Given the varying complexity of digital games, there
are multiple ways that the system can respond such as
adjusting: the difficulty, different digital game facets
(e.g. audio, visuals, level environments) or a combina-
tion of both. This paper will touch upon these different
methods explored within the literature, which ideally
will provide an outline of the different difficulties and
methodologies that need to be solved to achieve dynamic
game adaptation.

What is Adaptation?

The “player-experience loop” as it is often referred, con-
sists of the process that goes from the player stimulus
(i.e. the player interprets the audio-visual and sensory
feedback received from the game), which ideally pro-
vokes a response from the player either mechanically
(e.g. reacts to changes in the game) or physically (e.g.
emotional response) which are captured through input
devices (e.g. controllers) and sensors (e.g. physiologi-
cal recordings, eye tracking, facial expression analysis).
All this data is interpreted by a statistical model which
outputs a set of values that corresponds to the play-
ers current experience (or emotional state) - using game
difficulty as an example where a model outputs a value
between 0 and 1, the closer the value is to 0 or 1 suggests
that the player is finding the game too easy or hard, re-

spectively. Using the information obtained by the model
the game is expected to adapt, by either making the
game harder if it is too easy (or vice-versa), which in
turn restarts the loop. Although the concept of diffi-
culty is easy to understand in theory, mechanically it
can provide a series of design challenges that can be
quite cumbersome even for human designers (Aponte
et al. 2011). More precisely, the complexity of a game
and the increase of different mechanics can influence the
perceived challenge of a game, for example the challenge
in a game of Tetris (Pajitnov, 1984) is widely different
than a game of Super Mario Bros. (Nintendo, 1985).
Digital games come in a variety of complexities, which
have only increased over the years due to the moderniza-
tion of hardware, the wider availability of development
that ease the development process allowing for more
complexity and more intricate input devices that now
can incorporate haptics and sensory feedback. Thus, it
is no wonder why a large portion of the community has
often applied the topics of adaptivity on classical games
such as Tetris (Chanel et al. 2011) and Pong (Liu et al.
2009). Dealing with this complexity is potentially the
greatest challenge within the field of game adaptation.
Game adaptation can come in multiple forms, it can
focus on specific parameters such as difficulty (Chanel
et al. 2011, Liu et al. 2009), attempt to guide the player
emotionally (Lopes et al. 2015) or even adapt narra-
tive (Hartsook et al. 2011). Whatever the parameter
may be, games are intertwining complex experiences,
where the mechanics, visuals, audio and narrative all
work in tandem to create whatever experience the de-
signer intended (Fullerton 2019). Thus, this aspect can
be thought as a “creative” endeavour, where the ma-
chine or algorithm must be able to creatively adapt
content to keep the player effectively engaged (Liapis
et al. 2014). Thus, this specific topic spreads over mul-
tiple fields of research such as: Computational Creativ-
ity (Boden 1998), Affective Computing (Picard 2003),
Artificial Intelligence (AI) (Liapis et al. 2014), Game
Design and even Psychology. This section will provide
first a view of why adapting can be problematic, what
different methodologies exist that could potentially help
solve this problem to get closer to our game adaptation
objective.

Dynamic Difficulty Adjustment

Dynamic Difficulty Adjustment (or DDA) as the name
suggests consists of adapting a game’s difficulty so that
it matches a player’s skill-set dynamically. It is still
one of the most popular game adaptation fields within
the literature (Zohaib 2018). Since the early defini-
tion by (Hunicke 2005) the concept of DDA has nor-
mally taken the work of Csikszentmihalyi’s Flow The-
ory (Csikszentmihalyi and Csikszentmihalyi 1992) as in-
spiration, whereas ideally during play the goal of the
designer is to place the player in a state of flow - a men-



tal state where the person loses their perception of time,
becoming fully absorbed in the task at hand. (Csikszent-
mihalyi and Csikszentmihalyi 1992) defines flow as a del-
icate balance between boredom and anxiety/frustration,
where flow is achieved if the difficulty of said task stays
within a boundary between both states. Considering
that the player gains more proficiency as they play, DDA
argues that by adjusting the difficulty dynamically it is
easier to keep the player within this flow state and ad-
just the mechanics according to each players “learning
curve”.
Since the early 2000’s games have attempted to apply
some of these concepts in some shape or form. One of
the earliest examples is Max Payne (Remedy Entertain-
ment, 2001), which would monitor player health and
add or remove health packs throughout a level consider-
ing a player performance metric. Within the literature
this concept has often focused on the construction of
frameworks and models offering potential solutions for
DDA (Zohaib 2018) whilst work that has directly ap-
plied DDA into actual games are slimmer, often focus-
ing either on classic simple games such as Tetris (Chanel
et al. 2011, Hufschmitt et al. 2021), Pong (Liu et al.
2009, Darzi et al. 2021) or exclusively modifying Non-
Player Character (NPC) behaviours (Yang et al. 2009,
Tan et al. 2011). The reasoning why this is such a
difficult concept to put into practice is that difficulty,
similar to other game adaptation problems, is often in-
fluenced by a wide variety of complex and intertwin-
ing parameters that can influence the perception of dif-
ficulty. For example the perception of difficulty in a
racing game (Togelius et al. 2007) varies significantly
than that of a platforming game such as Super Mario
Bros. (Pedersen et al. 2010). Thus, simple straight-
forward games the perception of difficulty tend to be
reliant on a lower number of parameters that need to be
manipulated. To fully convey the concept of difficulty
it is also important to understand what game complex-
ity is. Complexity within this paper is defined as the
amount of intertwining mechanics that exist within a
game, where each underlying mechanic has a direct re-
lationship with the perception of difficulty in some way.
For example:

• Tetris: is a low complexity game as difficulty often
consists of either withholding certain Tetriminos or
increasing/decreasing their falling speed.

• Pacman: the complexity increases given that its
difficulty lies directly with the ghosts themselves -
improving their AI directly influences difficulty of
the game, which is less straightforward than Tetris.

• Super Mario Bros.: the complexity increases as
several factors can increase the difficulty of this
game. Such as wider gaps (i.e. more difficult jump),
less power-ups, more enemies – the level design it-
self influences difficulty, which means levels need to

Figure 1: Condensing difficulty factors into one diffi-
culty variable. Each factor can have a specific weight,
influencing the final ”difficulty score”, which in turn in-
fluences play.

adapt autonomously.

• Call of Duty: the complexity increases again as
several factors in this game can make the game
harder – level design, enemy positioning, enemy
health values, enemy shooting effectiveness, player
health, player guns available.

The combination of different “difficulty parameters” can
rise exponentially given the mechanical complexity of a
game. Whereas it can even become difficult to playtest
as there are so many diverging parameters that can in-
fluence and alter the perception of difficulty towards
players. Thus, both from a game design and an AI
perspective, condensing difficulty parameters (see Fig-
ure 1) can be quite beneficial as a tool for designers and
facilitate DDA for AI models. However, this is not as
straight-forward as it may seem as each parameter is
substantially different when categorizing difficulty and
may have more/less influence on the overall perception
of difficulty. Not to mention that certain aspects such
as levels or puzzles, are either pre-defined by designers
(each of them are hand crafted and subsequently tagged
a specific difficulty metric) or an autonomous process
creates a level/puzzle with an expected difficulty of x,
for example. As such DDA can be explored through
both adaptation techniques described further below, i.e.
Facet Parameter Adaptation and Procedural Content
Generation, or even a hybrid method of the two. De-
pending on the complexity of the game, difficulty may
derive from the level design itself which may require
a Content Generation solution such as in Super Mario
Bros. (Pedersen et al. 2010) or Angry Birds (Rovio En-
tertainment, 2009) (Ferreira and Toledo 2014), or may
be something as simple as adapting the falling velocity
parameter of tetrimino pieces in Tetris (Chanel et al.
2011).



Going Beyond Difficulty

Despite difficulty being one the most popular types of
game adaptation, other game-playing experience factors
can also have considerable benefits for players. For ex-
ample (Pedersen et al. 2010) already suggested focusing
on other types of experiences such as “fun” or “frustra-
tion” at the time, which (Yannakakis and Togelius 2011)
further explored. Furthermore, games can also influ-
ence players emotionally (Yannakakis and Paiva 2014)
given the audio-visual nature of the medium. Thus, an-
other goal for optimizing adaptation algorithms can be
through labels of emotional psychological theory such
as: (Ekman 1999) basic emotion theory or the more
granular emotional theories like the (Russell et al. 1989)
circumplex model of affect. In essence, the latter is
the application of affective computing methods (Picard
2003) within the domain of game content adaptation,
e.g. optimizing a horror game based on the varying lev-
els of player anxiety (Lopes et al. 2015, Graja et al.
2020).

Methods of Adaptation

Game adaptation – or simply adaptation – in the con-
text of this paper refers to an autonomous process
whereby game mechanics and/or virtual content are op-
timized (or minimized) towards an intended metric. For
example an adaptation algorithm can consist of a sys-
tem that changes the environmental lighting and audio
to induce different degrees of anxiety (Lopes et al. 2015),
or alter the architecture of a level inducing more or less
challenging game-play (Shaker et al. 2010).
The following sections will provide an overview of
how adaptation methods have been explored previously
within literature and their current limitations.

Game Content Orchestration

(Liapis et al. 2018) defines orchestration as: The har-
monization of the game generation processes. More pre-
cisely, (Liapis et al. 2018) state that games are interac-
tive multimedia experiences that can be manipulated in
multiple ways. Orchestration is the process that “com-
bines” these diverging systems (e.g. level, sound and
visual generator) into something cohesive and playable
(see Figure 2). Metaphorically, much like a musical
conductor who signals the different instruments in an
orchestra, orchestration consists of the development of
autonomous systems that signal or modify the different
audio-visual and mechanical parameter generators so as
to achieve an intended player experience or aesthetic
(i.e. the metric). For example, in the previous work by
(Graja et al. 2020), the authors explored how changing
light intensity and colour, in addition to different sound
cues can potentially be used for the manipulation of ten-
sion and player anxiety within a horror game. Another

Figure 2: Example of an Orchestration Model. Or-
chestration controls and manipulates the different facet
parameters of a game to dynamically provide different
game-playing experiences and aesthetics.

popular example is the AI Director from the Left 4 Dead
series (Valve Corporation, 2008-2009). Although, the
most popular feature of the algorithm are adversarial
aspects of the game, allowing the system to control the
flow of enemies sent towards the player (i.e. the zom-
bies), it also had features that would control the amount
of weapons and health that would appear around the
map and modify certain paths forcing players to detour
from the main path. All decisions are taken accord-
ing to a curve of suspense, where the system constantly
monitors the player performance and the current state
of the game. In fact, the director system is one of the
first industry attempts of adapting games based on pace
and suspense metric. If the players are going through
the level too fast, the system will try and complicate
matters by restricting ammunition and health and in-
creasing the amount of enemies, on the other hand if
the players are struggling the system will offer more lo-
cations for “downtime” allowing players to restock and
wind down until facing another “outbreak”.
(Liapis et al. 2018) further decomposes the concepts
of orchestration into an additional approach referred
to as bottom-up (while the latter is referred to as top-
down). The Bottom-Down approach forgoes the overar-
ching system, where all facet generators work towards a
common or diverging goals, ideally resulting in an emer-
gent coherent whole.

Facet Parameter Adaptation

Facet Parameter Adaptation consists of systems that
slightly alter specific in-game parameters of handcrafted
content. The previously mentioned game Left 4 Dead,
is a good example of Facet Adaptation, where the sys-
tem for example directly alters specific paths of the level
with other handcrafted ones, or adjust the flow of ap-
pearing enemies accordingly. Facet adaptation had been
used to invoke certain audio-visual aesthetics (Graja



et al. 2020), adjust the speed of falling tetriminos in
Tetris (Chanel et al. 2011) or the distribution of health
packs and monsters in the game Left 4 Dead.

Procedural Content Generation

Unlike Adaptation, Procedural Content Generation
(PCG) consists of creating algorithms that can con-
struct content “from scratch” (Togelius et al. 2010,
Shaker et al. 2016). For example, by using a rule-based
system with a degree of randomization it is possible to
construct entire virtual universes with different fauna
and flora – No Man’s Sky (Hello Games, 2016). This
concept has existed since the 1980’s with games such as
Rogue (Wichman and Arnold, 1980) and Elite (Braben,
1984), where the latter popularized the “Rogue-like”
genre by integrating the generation into the gameplay
(i.e. new levels every time the player “dies”); and the
former popularized the idea of large open generated uni-
verses filled with galaxies and planets. However, both
games examples showcase some of the different concepts
within the PCG field. PCG in particular has also been
used quite extensively within literature from the gen-
eration of racing tracks (Togelius et al. 2007), levels of
Angry Birds (Ferreira and Toledo 2014) and even Super
Mario Bros. (Pedersen et al. 2010).
It is also important to consider that most PCG algo-
rithms exploring multi-facet generation tend to include
some form of Facet Parameter Adaptation within the
algorithmic process, thus it is quite common to see
some form of hybridization between PCG and the lat-
ter within literature. Particularly the work of (Nogueira
et al. 2016, Lopes et al. 2015) explores the generation of
dungeons by combining facet adaptation of audio and
lighting.

Deterministic PCG
Deterministic PCG is as the name suggests, PCG al-
gorithms that will generate the same world every time.
This method is often used to save disk space, allowing
developers to re-use assets and create worlds that would
be impossible otherwise (e.g. The Large Universes of
No Man Sky, for example). The game Elite is one of
the first examples of doing this – a game with a gigantic
world that could be saved on a single floppy disk.
These types of systems often have no randomization and
are entirely guided by deterministic functions that will
generate the same world every time. These types of
algorithms are used mostly for optimizing disk space.

Exploratory PCG
Unlike deterministic PCG, exploratory uses randomiza-
tion for the construction of diverging content each time
the algorithm is run. These types of systems are often
accompanied by a numerical seed, which can be defined
by the developer (i.e. same seed for all), or players (i.e.
share the seed so others can play in a similar world),

which in turn influence the randomization functions.

The strength of this method is its diverging capabilities,
meaning that every time a player starts a new game it
will generate content that has (ideally) never been pre-
viously experienced by the Player. Most approaches,
however, do tend to use a Hybrid-type approach, where
the generation can often have certain deterministic pa-
rameters in addition to a degree of randomness.

PCG Granularity

When discussing granularity in PCG it often refers to
the extent of control that is given to the generator. For
example, let’s take the levels of the popular game Super
Mario Bros. (Nintendo, 1984). One way of generating
levels for this game is to think of a level as pre-made
subsections (i.e. small vertical sliced chunks of levels),
which are placed next to each other logically. In this ex-
ample, each chunk is designed by a human, which was
then picked and placed by an autonomous system. This
form of PCG is used by the popular game Spelunky (Yu,
2008), and is often referred to as a “Low Granular” gen-
erator.

“Higher Granularity” is relying on less human-authored
content and offering more control on the generator. Us-
ing the Super Mario Bros. example again, a more gran-
ular generator would place each individual tile-piece.
Such as placing the ground, tubes, enemy, power-ups,
gaps and where the level finishes. As such the only
human-authored content in this situation are the tile
designs themselves, but how they are formed and struc-
tured in a level is entirely defined by the generator. As
expected, these types of generators are far more com-
plex, but can offer significantly more variability in their
generated levels.

Offline and Online Generation – What does it mean?

These concepts often refer to when exactly the genera-
tion takes place, which is before play (offline) or during
play (online). Most PCG systems currently employ an
offline tactic, where most of the generation takes place
before actual play. The previous examples such as: No
Man’s Sky or Spelunky all employ an offline method
where all the generation takes place a-priori to play.

Online methods are generators that will generate con-
tent during actual gameplay and is often more suited
for adaptation methods. The problem with this type
of generation is that it can often be intensive and cause
framerate issues, and it is more difficult to implement as
it must work side-by-side with the actual game. On the
plus side, these types of games respond to player emo-
tion/experience almost instantaneously i.e. while the
game is actually being played (Nogueira et al. 2016).
This can be advantageous for the model as it is able to
address divergences that occur during actual play rather
than ”in-between” different levels, for example.



Learning to Orchestrate

The current limitation of orchestration is that all facets
need to have some form of “controllability” which allows
the orchestrator to modify them. For example, if the
designer wants the lighting to be controllable, the vari-
ables of this facet must be accessible to the orchestrator
(e.g. intensity, angle, color). More complex systems
such in-game events or designing Non-Playable Char-
acters (NPC) still currently requires the hand of a de-
signer (see figure 3). For example, an event can be as
simple as opening or closing a door (e.g. effective way
of creating tension in a horror game) or unleashing a
specific type of monster towards the player (e.g. the
choice is dynamic, but the monster/event was designed
by a human). For generative algorithms which already
have to deal with their own algorithmic parameters, will
potentially require an additional “meta-parameter(s)”
extending beyond the generator, relating its outputted
content within the context of the overall scenario and
how it “harmonizes” with other facet generators and pa-
rameters informing the orchestrator of the current sce-
nario (i.e. once all elements are combined, what is the
playing experience or aesthetic quality?).
Thus, here lies the main challenge when developing such
a system as the complexity of intertwining content can
lead to a wide range of player experience output, which
ideally should be data-driven through extensive game-
playing data collection. For example by annotating the
player experience and constructing relations between
the scenario meta-parameters and said annotation, it
would be possible to extend said relations to each gen-
erator/adaptation’s local parameters. However, such an
optimization could be costly particularly in pin-pointing
exactly the weight and influence of each generator on
the overall experience. Thus, before even creating an or-
chestrator one must be able to understand how to collect
such a wide-range of multi-faceted data for the construc-
tion of an orchestration system in the first place.

Data Collection Process and Annotation

Let us further assume that we have an orchestrator
which can access different content modifying parame-
ters of the game, such as controlling level parameters
(e.g. funnel players towards specific locations) or light
and audio sources (e.g. set and trigger different sounds).
Given the available parameters and the information ob-
tained from the model, how does the game modify these
values to maximize metric x. According to (Graja et al.
2020), one way to accomplish this is by creating a range
of static scenarios, in which the aesthetic quality is mea-
sured through play-testing or “tagged” by designers.
Given the number of combinations, depending on how
many parameters exist, it can be extremely difficult to
pin-point exactly the type of aesthetic conveyed. Not to
mention personalizing this content further complicates

Figure 3: Data Collection Methods for ”Orchestration
Learning”.

matters given that in this situation the aesthetic goal
varies along with the said parameters, thus a sort of “cal-
ibration” system would be necessary to accomplish this
task. One solution could be through autonomous test-
ing using player archetype models such as in (Holmg̊ard
et al. 2018). Recent advances in bayesian parameter
estimation (Jaakkola and Jordan 2000) and optimiza-
tion (Shahriari et al. 2015) could be a solution, as a way
of reducing the search space between scenarios and al-
lowing our data collection process to focus on the specific
relevant parameters instead of brute forcing through the
entire spectrum of values. Furthermore, it is also impor-
tant to consider that certain facets can also play off each
other, such as how dark lights can complement somber
sounds (Ekman and Lankoski 2009), which can further
increase the complexity of the problem given how this
interplay-ability can also influence player aesthetics in a
wider variety of ways, either from the audio-visual per-
spective (Palmer et al. 2013) or through the way inter-
acting mechanics and dynamics of play (Hunicke et al.
2004).

Game Aesthetic Assumptions

For the purposes of context aesthetics can be defined
as the perceived emotion that a certain combination of
digital game facets is trying to evoke. If we take hor-
ror as an example, the audio, the player movement, and
the visuals are often constructed and designed in such a
way that it maximizes the feeling of player helplessness
such as Amnesia: The Dark Descent (Frictional Games,
2010). On the other hand, games that intend to make
the players feel powerful rely on other types of mechan-
ics and visuals whereas the player can easily overcome
certain challenges, for example.



As an alternative to the bottom-up approach, it may
also be worthwhile to explore top-down methods us-
ing game-playing and audio-visual aesthetics as domain
knowledge. Instead of focusing on solely collecting data
to construct our algorithms, it can also be beneficial
to “aid” autonomous systems with domain knowledge,
which can further increase the quality of the content.
For example, it may be beneficial to provide scenarios,
which are theoretically proven to induce certain types
of emotion to further reduce the search space of the or-
chestrator. Previous work explored the idea of game
playing aesthetics and even film aesthetics (Lopes et al.
2015, Yannakakis and Paiva 2014, Graja et al. 2020) and
how it can potentially benefit the construction of gener-
ators. It is also viable to have the designers themselves
tag and annotate the different facet parameters accord-
ing to emotion/challenge, which can include the various
combinations between diverging facets ideally aiding the
decision making process of an orchestrator. Despite the
laborious process for designers such systems have been
used within the industry to create more dynamic sys-
tems that lead to more emergent situations such as Left
4 Dead.

Conclusions

Dynamic content adaptation for digital games is not a
straightforward task as it can depend on a series of fac-
tors that can influence the complexity of said adapta-
tion. Despite the amount of work that already exists
within the field of statistical player modeling, the liter-
ature often focuses on just that - modeling player emo-
tion, experience or likelihood to continue playing (Yan-
nakakis and Togelius 2011, Yannakakis et al. 2013, Yan-
nakakis and Paiva 2014, Debeauvais et al. 2011). This
paper argues that statistical models should be applied
for this purpose, however to achieve this it is neces-
sary to look beyond statistical modelling and explore
methodologies capable of altering the state of the game
through either established Game AI techniques (e.g.
Orchestration or PCG) and the further exploration of
Game Aesthetics as inspiration for different adaptation
methodologies.
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